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1. Introduction and statement of the problem.
hen the behaviour of clocks is treated according to the

V V principles of the special theory of relativity, without making 
due allowance for the principles of the general theory, a well- 
known paradox can arise, which was already mentioned in 
Einstein’s original paper1) and later was discussed in detail 
by Langevin2), Laue3), and Lorentz4). With a slight simpli
fication of the usual representation*,  the problem may be stated 
as follows. Consider two identically constructed clocks, and 
C2, one of which, say C15 is permanently situated at rest at a 
point A on the positive X-axis of a definite Lorentz frame of 
reference K, while C2 is moving with constant velocity —v in the 
direction of the X-axis (see Fig. 1). At the moment of coinci
dence between and C2, the readings of the two clocks are 
compared. After having travelled with constant velocity for a 
long time, C2 for a short time is attacked by a constant force 
F which brings it to rest at the origin 0 of K and starts it back 
to A with reversed velocity v. At the moment of the second en
counter, the clocks CL and C2 are compared again. Let z/ti and 
.//2 denote the measurements on the two clocks of the time 
elapsed between the two encounters. Now, assuming that the 
force F is so large that the time during which C2 is accelerated 
is negligible compared with the time of travel at the constant 
velocity v, we have, according to the special theory of relativity, 
the formula**

* Usually, the two clocks are assumed to be initially and finally at rest, 
which necessitates the further introduction of a force at the beginning and at 
the end of the experiment.

** Throughout this paper, we shall use a time unit which makes the velocity 
of light equal to unity. The transition to ordinary units is then performed by 
replacing in our formulae all time variables t, velocities v, accelerations g, and 

v q CI’
gravitational potentials by ct, —, 'o, — , respectively, where c is the velocity 

of light in ordinary units.

1‘
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(1)

which shows that C2 will register a smaller number of divisions 
than Ct at the end of the indicated experiment.

The paradox in question now arises, if we introduce a frame 
of reference k moving together with C2 in such a way that C2 
is permanently situated at the origin of k. Since the motion of 
Ct with respect to k then is similar to the motion of C2 with 
respect to K, it seems that an observer in k should arrive at 
the conclusion that must be smaller than z/f2 and must be 
given by the formula

z//t = .//2 p l (2)

in contradiction to (1). In the papers quoted above, it was 
pointed out, however, that the equation

dr = dl J/1 —u2 (3)

connecting the proper time dr of a clock moving with the 
velocity u in a given system of reference with the lime dt of 
this system is valid only if the frame of reference is a system 
of inertia like K. The application of (3) in K thus leads to 
the correct formula (1), while the application of (3) in k which 
leads to formula (2) is not justified, since k is accelerated in 
the middle of the experiment and, therefore, does not constitute 
a simple system of inertia during this interval.

In the space-time continuum introduced by Minkowski, the 
two events marked by the first and second encounters of the 
clocks are represented by two points connected by the world 
lines of Ct and C2, of which the first mentioned is a straight 
line. Since the lengths of these world lines, on account of (3), 
are proportional to the proper times and J t2 of the two 
clocks, the statement expressed by (1) may be considered a 
special case of the general statement that a straight line con
necting two points in Minkowski space is of greater length than 
any other curve (of everywhere time-like character) connecting 
the two points.

Thus, it was clear that the discussion of the indicated ex
periment could not lead to any difficulties for the special theory 
of relativity, since this theory does not make any statement at 
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all regarding the behaviour of clocks in accelerated systems 
like k. The paradox arose again, however, in the general theory 
of relativity, according to which a treatment of the behaviour 
of Ct, from the point of view of an observer in k, must be 
possible. Neglecting the short interval during which k is no 
system of inertia, we then lind again the formula (2) for the 
time increase of Ct measured with the time scale of k and. at 
first sight, it is difficult lo understand how it is possible to ac
count for the difference between (2) and (1) by consideration 
of the short interval in which k is accelerated. The whole 
question was clarified by Einstein0) who pointed out that, 
during this interval, the distant masses of the universe are ac
celerated relative to k, and thus temporarily create a gravita
tional field which influences the time rates of the clocks in such 
a way that lhe total time increase of Ct measured in the time 
scale of k is again given by (1).

In his paper just quoted, Einstein did not give any explicit 
calculations, but it is clear beforehand that the result of a cal
culation must be as stated above. In fact, since fti and Jt2 
are proportional to the lengths of the world lines of Ct and C2 
and these lengths, according to the basic assumptions of the 
general theory of relativity, are independent of the space-time 
coordinates used in their evaluation, it is obvious that we shall 

get the same value for whether lhe calculation is performed 

in Zv or in k. Nevertheless, it is instructive to calculate directly 
lhe time increase of Ct during the existence of the gravitational 
field in k. For small values of v, this has been done by Tol
man0) who assumed that terms in z? higher than lhe second 
can be neglected. In order to account for the lack of symmetry 
between the treatment given to the clock Ct, which was at no 
time subjected to any force, and that given to the clock C2, 
which was subjected to the force F in the middle of the experi
ment, Tolman introduces a temporary homogeneous gravitational 
field in the description where C\ is taken as lhe moving clock 
and C2 as the one which remains at rest. This gravitational field 
is allowed to act on C\ and C2 in such a way as lo produce the 
desired change in velocity of Ct, while C2 remains at rest on 
account of the force F. By means of the well-known formula
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for the relative rates of two clocks situated at points of different 
potential in a weak static gravitational field, Tolman then finds 
for the total increase in time of Cx and C2 during the considered 
experiment the relation

(1 + 2 ”3) (4)

which, for small v, is in accordance with (1).
Apart from the restriction to the case of small v, this treat

ment does not seem to us to be complete, since it remains to 
be shown that the transformation from K to the accelerated 
system k leads to a system of space-lime coordinates in which 
the components of the metrical tensor are constant in time and 
are of the form corresponding to the gravitational field explicitly 
introduced by Tolman. In the present paper, we shall investigate 
this point more closely and without making the assumption 
of a small velocity v. It is shown that the accelerated frame of 
reference k may be defined in such a way that the gravitational 
field in k is static in the sense of the general theory of relativ
ity. The equations by which the space-time coordinates of k 
are expressed as functions of the coordinates of the system K 
during the whole experiment are explicitly written down. By 
means of these equations, the behaviour of the clocks and 
C2 may easily be treated from the alternative standpoints of the 
observers in the two systems K and k, thus leading to a com
plete solution of the clock paradox.

2. Uniformly accelerated frames of reference and homo
geneous gravitational fields.

In a general discussion of the clock paradox, we need a 
formula connecting the space-time coordinates X, Y, Z, and 7’of 
a Lorentz frame K with the coordinates x, y, z, and t of a 
“uniformly accelerated” frame of reference k. If the direction 
oí acceleration is chosen as .T-axis, the desired transformation 
must have the form

WM, y=Y, z = Z 
t = h(X, T),

f and h being functions of X and T, only.

(5)
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Taking for f and h the expressions

/■=X-|ffTs, h=T, (6)

where g is a constant, (5) represents the ordinary transforma
tion to accelerated axes which, at least for small velocities, 
might be regarded as a reasonable change of coordinates. A free 
particle in k has then a constant acceleration —g, just like a 
particle in a constant Newtonian field of gravitation. The gravita
tional field in k, however, is not static in the sense of the 
general theory of relativity, since the components of the metri
cal tensor are varying with t.

In fact, introducing (5) and (6) into the expression

ds2 = dX2 4- dY2 + dZ2 — dT2 (7)

for the line element in Minkowski space, we get

i. e. the non-vanishing components of the metrical tensor defined

is seen to vary with t.
From (10) and (11), we get

ds2 = dx2 + dy2 + dz2 + 2 gtdxdt — dt2 (1 — g2t2) , (8)

by the general expression*

ds2 — gik dx1 dxk, (x') = (x, y, z, /) (9)
are

.911 = .922 = 933 = 1 ’ 944 = — (1 —g2t2)
(10)

914 = 941 = 9/- J
Even the geometry in physical space defined by the three-
dimensional line element

}'ik dx1 dxk
i, k = 1

9i4 9k4
‘ (ID

? ik = 9ik~ 944

d = 1^272 + dlJ~ + d^2 (12)

* Here, the usual convention is made regarding the summation over dummy 
indices from 1 to 4. 
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in accordance with the fact that the measuring rods in k are 
subjected to a Lorentz contraction.

The gravitational held in the frame of reference defined by 
(6) has, therefore, not much resemblance with the gravitational 
fields assumed in the previous discussions of the clock paradox. 
Our first task will be, if possible, to choose the functions /' and 
h in (5) in such a way that the gravitational field in k is 
static. The expression for the element of interval in the new 
coordinates will then be of the form

ds2 = A • d.r2 + dy2 + dz2 — Z) • d/2, (13)

where A and /) are functions of x, only. This expression may 
be further simplified by taking as coordinate \ ¡/A d.r instead of 
x so that the line element takes the form

ds2 = dx2 + dy2 + dz2 — I) • di2. (13')

If the desired transformation is at all possible, the functions 
gik defined by (9) and (13') must satisfy Einstein’s field equa
tions for an empty space

Kf-lôfK = 0. (14)

where /41' is the contracted Riemann-Christoffel tensor, and 
R = R\ is obtained from by further contraction. The compo
nents of G-; have been calculated by Dingle7) for a general 
line element of the form

ds2 = A (d.r1)2 4 B (dx2)2 4- C (dx3)2 — I) (dx4)2 (15)

with A, B, C, and I) being any functions of the coordinates.
Using Dingle’s formula in the special case of (13'), we get

where the accents indicate differentiation with respect to x, and 
all other components G-; vanish identically.

The equations (14) thus reduce to the single equation

(D1/’)" = 0 (16)
with the general solution
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Z) = a(l +<7æ)2 (16')

containing two arbitrary constants, a and g.
By adequate choice of the time variable, the constant a may 

be made equal to one, giving for the line element (13') the ex
pression

ds2 = dx'2 + dy2 + dz2 — (1 + gx)2 dt2. (17)

The functions gik, defined by (9) and (17), which were found 
as solutions of the equations (14), may now by a simple cal
culation be shown also to satisfy the more strict conditions

= 0, (18)

where Rlklm is the uncontracted Riemann-Christoffel tensor. This 
means that the geometry in the space-time continuum corre
sponding to (17) is pseudo-Euclidean and that the line element 
(17) may be brought into the simple form (7) by a suitable 
transformation of the type (5). Apart from an arbitrary Lorentz 
transformation, which does not change the form (7), this trans
formation is uniquely determined.

Before we write down explicitly this transformation, which 
inversely gives the transition from an inertial system K to the 
desired frame of reference k, we note that the gravitational field 
in k, according to (17), is uniform in that part of the space 
for which gx is a small quantity. In fact, neglecting all terms 
of higher order in gx than the first, we have

9^44 = —1—2^, (19)

and the Newtonian gravitational potential which, in the case 
of “weak” fields, is defined by the equation8)

944 = -l-2Ow, (20)

has therefore the simple form

= (21)

The line element (17) has, however, well defined physical 
consequences for large values of gx also, so that the gravitational 
field defined by (17) is a generalization of the “weak” uniform 
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field postulated in previous discussions of the clock paradox. 
The only necessary restriction regarding the values of .t is the

. 1 condition x >----- .

The geometry of physical space in k is Euclidean, rr, g, and 
z being Cartesian coordinates. The time variable t is the time 
measured by a standard clock situated at rest at the origin x = 0. 
The increase of time dr of a standard clock situated at any 
other place is given by the formula

dr — ÿ—g^dt — (1 + gx) dt, (22)

dr thus being zero in the singular plane x =----- .

Turning now to the explicit derivation of the transformation 
connecting the space-time variables of the two systems K and k, 
we start with the system k and try to find a transformation 
by which the gravitational field of Â- is “transformed away”. 
This may be effected by introduction of a frame of reference 
consisting of material points which are allowed to fall freely in 
the gravitational field of k. The world line of a free particle is 
a geodesic given by the equations

; dxk dxl 
j~ö" t UI j dr¿ dr dr = 0, (23)

where dr = — ds is the proper time of the particle and /’I-/ 
denote the ordinary Christoffel three index symbols. The values 
of Zlz in the case of (17) may also be taken from Dingle’s 
paper7), and we get

/« = s(iG, = rj, = / .1 + gx
all other components being zero.

The equations (23) with i = 1, 2, 3 are then simply

and from (17) we get, as a first integral of (23),
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2

(25)

For a particle at rest (or small velocity), (24) reduces to

d2x 
dt2 

<P_y 
dt2

— gÇl + gx)

If the gravitational potential (D is defined by the equation

we thus get
= — grad (D, X = (x, g, z),

(D = gx + - g2 x2, (26)

an expression which may be regarded as the generalization of 
(21) to the case of strong fields.

The equation (20) is seen to hold also in this case, since 
we get from (17) and (26)

<744 = -(1+2 0). (27)

Finally, (22) may be written

dr =]/l+2 (Ddt (28)

which, for small O, reduces to the well-known formula8) for 
weak fields

dr = (1+©,„)<«. (29)

Returning now to the general equations (24) and (25), we 
see that the motion of the particle in the directions of the g- 
and z-axes is uniform if the proper time t is used as lime scale. 
We are here only interested in the case where the velocities are 
zero at t = t = 0, so that we have the solutions

y = ?7o> * = *o>  (30)

y0 and z0 being the initial values of y and z.
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From (25) and (24) we then get
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(31)
and

which may also he written

d2
2 A (32)

dt
d T

d*x  g

<IS <1+^)ä

When the initial velocity is zero and ,r0 denotes the initial 
value of x, we get by integration of (32)

X = ’ {/(l + ffx«)2 - g"-t*  -1}. (33)

Introduction of (33) into (31) gives

d/ 1 + gxQ
d i ( 1 + .Q.r0)2 — g21 i2

which by integration yields

From (33) and (34) it follows that a free particle initially 
at rest at some point in k will move with increasing velocity 
in the direction of the negative .r-axis, later the velocity will 
decrease and, finally, the particle will come to rest again in 
the singular plane x = at the time t = oc or t = x0 + —.

We now get the desired transformation, if we put x0 — X, 
yQ = Y, z0 — Z, and t = T in the equations (30), (33), and 
(34), A', ¥, Z, T then being the space-time coordinates of a 
freely falling frame of reference K which, at the time / = T = 0, 
coincides with the system k. In this way, we get
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x = - ( |/( 1 + gX)2 — g2 T2 — 1 )

g = Y, z = Z

i = 1
2 g l+gX—gT

(35)

By a simple calculation, it may be verified that the line 
element (17) is really brought into the form (7) by the trans
formation (35), showing that the system K is actually a system 
of inertia.

Any fixed point in k with constant coordinates x, y, and z 
is moving relative to K in accordance with the equations

A = ^W+.<7*) 2+9ari!-i)
V = y, z = z

(36)

obtained by solving (35) with respect to X, Y, Z.
This motion is, according to the laws of the special theory 

of relativity, identical with the motion of a particle of rest mass 
m subjected to a constant force ---- — in the direction of the1 + gx
X-axis in a system of inertia, i. e. (36) represents the “hyperbolic 
motion”9) of a “uniformly accelerated” particle with acceleration

(37)

On account of the dependence of / on x, the distance, 
measured by an observer in K, between two fixed points in the 
frame k will not, in general, be constant in time. Since, however, 
the same distance is constant when measured by a comoving 
meter stick, the system k deserves the name of a uniformly 
accelerated rigid frame of reference, and the transformation (35) 
plays a similar part as does the Lorentz transformation in the 
case of a rigid frame moving with constant velocity.

Since the variables x and /, defined by (35), must be real, 
we shall have to confine ourselves to the consideration of events 
satisfying the condition

— (1 + yX) < gT < 1 + gX. (38)
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For later use, we also write down the Lorentz transforma
tion connecting the space-time coordinates of two systems of 
inertia with the relative velocity n

= X-X0-p(T-T0) 
y i

y = y, z = z

f-f = T-T0-v(X-X0)

(39)

In (39), the space and time variables have been chosen in such 
a way that the origin x = 0 of the system k at the lime / = /0 
corresponds to the coordinate X = Xo and the time T = To in K.

3. The clock paradox.
a. In the first part of this section, we shall treat the prob

lem from the point of view of an observer in K. While the 
clock is permanently situated at rest at the point A on the 
positive X-axis, C2 at the beginning is travelling with constant 
velocity —n in the direction of the X-axis. At the point 7?, the 
clock C2 is subjected to a constant force F, which brings it to 
rest at the origin 0 and starts it hack to 7? with reversed velo
city. At the time of arrival in 7?, C2 will have regained the 
velocity V which it retains during the travel from 7? to A. Let 
us assume for simplicity that the coincidence of C2 with 0 takes 
place at the time T — 0 and that the proper time t of C2 is 
also zero at this moment. Since the problem is then completely 
symmetrical with respect to this event, we only need explicitly 
to consider the behaviour of C2 during its travel from 0 to 77 
and onwards to A.

Let T' and T" be the limes, measured in the time scale of 
the system K, during which C2 travels from 0 to B and from 
B to A, respectively, and let r' and r" be the corresponding 
proper limes measured by the clock C2 itself. The motion of C2 
from B to 0 and back to B will be a hyperbolic motion given 
by the equation

(40)
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where the constant g is connected with the force F and the rest 
mass in of C2 by the relation

(41)F = mg.

<7 7’
|/1 + p2T2

(42)

and, since u = v for T = T', we have

(43)

Introducing (42) into (3), we get by integration

g'X' = sinh ør'. (44)
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The corresponding relation between T" and t" is, according 
to the well-known fórmala from the special theory of relativity,

T (45)T" =
1 — n2

From (43) and (44) we further obtain

(46)1

Now, let íKt\ denote the number of divisions registered by 
during the travel of C2 from O lo B, as judged by an ob

server in K, and let be the corresponding number during 
the period of uniform motion of C2 from B to A. We then have

'i = T' and = (47)

and, for the total time elapsed between the two encounters of 
Ct and C2, measured by and C2, respectively, we get

(48)

When the applied force F is chosen so large that T' and r', 
given by (43) and (44), become negligible, the connection be
tween ./^ and z/f2, according to (48) and (45), is again given 
by the simple formula (1).

If L’ and L" denote the distances OB and BA, measured with 
the measuring rods of the system K, we get from (40) and (43)

(49)

(50)

We shall now introduce a frame of reference k moving 
together with C2 and we may take C2 as the origin of k. While 
the motion of the origin is, thus, completely determined, the 
motion of any other fixed point of k may, beforehand, be chosen 
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arbitrarily. In the previous discussions of the clock paradox, it 
has, however, tacitly been assumed that k should be a rigid 
frame of reference. According to the considerations in Section 2, 
it is then clear that the transformation connecting the space
time variables of K and k must be given by (35) during the 
accelerated motion of C2 from B to 0 and back. The motion of 
the origin x = 0 relative to K is then, on account of (36), 
identical with the motion of C2 given by (40), and the time 
variable t is simply the proper lime of the clock C2.

For all events satisfying the conditions —t' <t<r', the con
nection between the coordinates of K and k is, thus, given by 
(35). For t>T, the system is a simple system of inertia, and 
the corresponding space-time transformation is obtained from 
(39) by putting

/0 = % ', To = T', and Ao = L'. (51)

Similarly, we have for /<—i' the transformations (39) with 
reversed signs of v, t and T'.

In the following, we shall use the equations (35) and (39) 
in a somewhat different form. Solving the last equation (35) 
with respect to gT and introducing into the first equation, we 
get, if we omit the trivial transformations of the y and z variables,

gT = (1 + flX)tgh gt ]
1 + gX = (1 + gx) cosh gt j

for
— t <t<t.

By a similar procedure, we gel from (39) and (51) the trans
formation

7’ — T' = (/- r) |/1 - p2 + v (A - //)

for

X—L'
X + u(t — t') 

l/r^p2

t > t'.

(53)

For t<— t', the corresponding transformation (53') is obtained 
from (53) by reversing the signs of p, T', and r.

In spite of the great difference in form between the equations 
(52) and (53), they are easily seen to be identical for t = t'. 
For this particular value of t, the equations (52) reduce to

D. Kgl. Danske Vidensk. Selskab, Mat.-fys. Nedd. XX, 19. 2
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= (l+øX)tgh<7/
1 + gX = (1 + gx) cosh gr

which, by means of (43), (46), and (49) may be written

T = u(A-L') + T'

in accordance with (53) for t = F.
On account of the symmetry inherent in our problem, a 

similar result would be obtained for t = —F, so that the cor
relation of the coordinates x, y, z, I and the physical events is 
performed in a continuous way by the equations (52), (53), and 
(53'). Also the velocity of any fixed point in k relative to K 
varies continuously at t — F (and —/). From (36) and (52) 
we get for constant values of x, g, z

|/(1 ■- gx)2 +
(54)

is equal to u and —v for t> F and 

t<—F, respectively, which, on account of (46), is seen to be 
in accordance with (54) for t equal to F and —F.

While, thus, the velocities of the different points of k vary 
continuously, it is clear that the accelerations must be discon
tinuous for t = F and — F, since the force F is assumed to set 
in abruptly. This is also the reason for the sudden change in 
the gravitational potential from the value zero to the value 
given by (26) at these moments.

The system k defined by (52), (53), and (53') thus seems 
to be the most natural frame of reference to be used in the 

On the other hand,

discussion of the clock paradox. The applicability of this system 
of coordinates is only restricted by the condition that (38) must 
be satisfied for —F <t<F, i. e. for

— i)(l+gX)<gT<v(l + gX), (55)

on account of (52) and (46). Since u is smaller than one, a 
comparison of (38) and (55) shows that this condition is satis

fied for all events which take place at points X>------.
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b. We shall now treat the problem from the point of view 

of an observer in k, according to which C2 is permanently situ
ated at rest at the origin o of k, while Ct at the beginning is 
travelling with constant velocity p. The first encounter between 
Ci and C2 takes place at the time t = — t—t". At t = — F, Ct 
has arrived at a point b on the positive x-axis with the coordi

nate x = I". During the time — F <t<F, is subjected to the 
gravitational field which brings it to rest at the time i = o at 
a point a in the distance I' from b, and starts it back to o with 
reversed motion. In spite of this gravitational field everywhere 
present during this period, C2 remains at rest on account of the 
force F which just counterbalances the gravitational force.

The behaviour of the clock Ct is now simply obtained from 
(52) and (53) if we remember that the X-coordinate of has 
the constant value X = L' + L".

From the second equation (53) we then get
Z" = L" j/1—7(56)

since I" is the value of x for i = F.
2
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Further, since the .r-value of CL at t = o is I' +1", we get 
from the second equation (52)

Z' + Z" = L' + L" (57)
and, therefore,

Z' = // + L" ( 1 - /1 -)?). (58)

On account of the Lorentz contraction factor in (56), the 
distance travelled by with constant velocity v relative to k 
will, thus, be shorter than the distance which C2 travels with 
constant velocity in K. Nevertheless, the total distances travelled 
by the two clocks along the zr-axes will be equal. In the ex
treme case of p —> c, we have simply Z"-> 0 and ÍL'+ L".

If z/j. Zt • denotes the number of divisions registered by Ct 
during the travel from a to b (or from b to a), we get from 
the first equation (52), by putting A' = L' + L", ! = t', and

■ 4 - [1 + .</ + I")] tgh = T' + ZT" (59)

by means of (44), (46), (49), and (50).
For the corresponding number of divisions registered

by C[ during the period of travel with constant velocity, we 
have, according to the special theory of relativity,

z/"Zi = r" J/T^P. (60)

This formula is also easily obtained from the first equation (53) 
if we remember that Zt is the increase in T for A = L' L" 
during the interval r' <t< i' + i". On account of (45), we may 
also write

./;;/] = T"(i-p2). (bi)

Although, thus, z/;'/, is smaller than z/^Zt in (47), it follows 
from (59), and (61) that the total time elapsed between the 
two encounters of Ct and C2 measured by C\ and C2, respect
ively, is again given by

Jt, = + = 2(T' + T")
= ‘2 (/ + r") (48')
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in accordance with the expressions (48) derived from the stand
point of an observer in K.

It is interesting to note that ,Fk remains finite in the limit
ing case of very large forces F, where F, T', and i'Ktv vanish, 
since Fkl{ io (59) contains a term which only depends upon v 
and T". It is just this term which is essential for the solution 
of the clock paradox.

Since z//2 in any case is smaller than z/ils and accord
ing to (60), is smaller than r", j'k must be greater than F, 
i. e. the clock Ct goes faster than C2 during this period. From 
the point of view of an observer in k, the reason for this 
difference in rate is to be sought mainly in the difference in 
gravitational potential (D at the places of the two clocks. The 
behaviour of C1? however, will in general not be like that of a 
clock at rest at the point <r = Ï + I" = IF + L", even if T' and 
F are made small by use of a large force F. In fact, the number 
of divisions registered by a clock at rest during the time Jt = F 
is, according to (26), (28), or (22), given by

(40o = [1 + 9 (L' + L"Ï]-F, (62)

a number which is greater than /i'k tY in (59), since we have

tgh 9^ .<.T . 
9

From (17) and (26), we get the expression

for the proper time of a particle moving with velocity u in the 
gravitational potential This general formula, which comprises 
the special formulae (3) and (28), clearly shows that <Fktx in 
general must be smaller than since Cx during the time
in question falls freely with increasing velocity from the place 
x = IF + IF' towards smaller values of x, i. e. smaller values 
of the potential </>.

Only in the case n« 1 considered by Tolman, where tgli#/ 
is equal to gF, apart from terms of the third order in v (cf. 
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(46)), it is allowed to treat Ct as a clock at rest during the 
period of acceleration, since the difference between .l'ktx and 
(J'k /t)0 is then of higher order in v. Even in this case, where 
gt may he treated as a small quantity, the equations (52), 
however, do not reduce to the transformations given by (6). If 
we neglect terms of higher order in gt, we obtain instead

T = (1 + r/A) t = (1 + gx) I

A = x + - gt2 (1 + gx).

To get the transformation (6), we should, thus, have to replace 
the factor 1 + gx by 1 and this would mean neglect of just 
those terms which, in the preceding discussion, have been seen 
to be essential for the treatment of the clock paradox.

4. Rigid frames of reference in arbitrary motion.
In Section 2, it was shown that the transformation (35) is 

essentially determined by the condition that the gravitational 
field of the accelerated system k should be static, and the line 
element and the gravitational potential in the transformed system 
are given by (17) and (26), respectively. Since the motion of 
the origin of k in this case is a hyperbolic motion, the ap
plicability of the transformation (35) in the preceding discussion 
is confined to the case where the clock C2 is subjected to a 
constant force during the period of acceleration. For any other 
motion the gravitational field in the comoving system will not 
be static. Anyway, it is always possible to choose the time 
variable t in the transformations (5) in such a way that the 
line element takes the form (13), where A and 1) in general 
are functions of both variables x and /. If we want the system 
k to be a rigid frame of reference, A must, however, he indepen
dent of /, so that the line element may be brought into the 
simple form (13') by a suitable choice of the variable x. Then, 
the spacial geometry is again Euclidean, x, g, and z being 
Cartesian coordinates.

Using Dingle’s general formulae7), one finds that Einstein’s 
field equations (14) in this case reduce to the single equation 
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which is obtained from (16) by replacing the ordinary differen
tiations with respect to x by partial differentiations. The general 
solution is again of the form (16'), a and g here being arbitrary 
functions of t. Finally, the time variable I may be chosen such 
that the line element takes the same simple form (17) as in the 
special case treated in Section 2, g in the general case being 
an arbitrary function of t. The equations (18)—(29) and (63) 
are seen, therefore, to hold also in the general case.

In order to find the transformation (5) by which the ex
pression (7) for interval is transformed into (17) and by which, 
conversely, the gravitational field in k is transformed away, we 
may proceed exactly as in Section 2. First, we solve the 
equations (24) and (25) for the motion of a free particle ini
tially at rest. After that, the proper time t of the particle and 
the initial values x'o, y0, z0 of the space coordinates in k are 
identified with the time and space coordinates T, X, Y, Z in K. 
'The solution of the equations (24) and (25) is only somewhat 
more complicated than in the case of constant g considered in 
Section 2. Since g may be regarded as a known function of t, 
it is convenient to use t as parameter in (24) instead of r. The 
elimination of t is easily performed by means of (25) and, 
finally, applying elementary methods, a complete solution of the 
problem is possible.

We shall here give the results, only. For the transformations 
connecting the space-time variables of the systems K and k, we get

Ä = x cosh 6 + \ sinh V dt, Y = y, Z — z

T — x sinh 0 cosh 0 dt (64)

0(0 = \ g(0dt.
«JO

It is easily verified by means of direct calculation that the line 
element (7) is really brought into the form (17) by the trans
formation (64). Further, we see that the equations (64) in the 
case of constant g reduce to the equations (52) which are equi- 
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valent to (35). On the other hand, if g is assumed to he finite 
and constant for —t' < t < t and zero for all other times, (64) 
leads to the transformations (52) and (53) used in the discus
sions of Section 3.

When g is given as a function of /, the transformation (64) 
and, consequently, also the motion of the origin of Å- with 
respect to Ar is completely determined. Conversely, the function 
7 and the transformation (64) are uniquely determined by the 
motion of the origin of k. Differentiating (64) by constant x, 
we get

cAY = sinh fl-(1 + g.r) dt |
(IT = cosh fl- (1 + gx) dt. I 65

The velocity

is, thus,

of a fixed point in k with respect to K

U = tgh fl, (66)

an equation which may be regarded as a generalization of (54). 
Moreover, we get from (66), (65), and from the definition of fl 
in (64)

d / U \ _ 7
dT \/i—"l?/ 1+gæ

which shows that the motion of a point x — constant is the 
same as that of a particle of mass m attacked by a force

-—, just like in the case of constant q (cf. p. 13).
1 + 7æ '

When the motion of the origin x = 0 is given by the equation

(68)

the corresponding 7 
tion of the variable

is obtained as a function of t by elimina- 
T from the equations

d i W' \ 
dT \|/1 (J//)2'

t = \ ]/l--(W')¿dT
• 0

(69)

which are easily derived from (67), (68), (66), and (65).
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By means of the general equations (64), it is now easy to 
treat the clock paradox for an arbitrary motion of the clock C2 
during the interval of acceleration. Since, however, the treatment 
of this general case does not exhibit any essentially new features 
as compared with the treatment of the special case discussed in 
Section 3, we shall confine ourselves to the general remarks 
already made in this section.
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